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ABSTRACT 

Motivation: Identification of fusion gene is of prominent importance 

in cancer research field because of their potential as carcinogenic 

drivers. RNA-Seq data have been the most useful source for identi-

fication of fusion transcripts. Although a number of algorithms have 

been developed thus far, most programs produce numerous false 

positives, which is unacceptable to experimental confirmation. We 

still lack a reliable program that achieves high precision with rea-

sonable recall rate. 

Results: Here, we present FusionScan, a highly optimized tool for 

predicting fusion transcripts from RNA-Seq data. We specifically 

search for split reads composed of intact exons at the fusion bound-

aries. Using 269 known fusion cases as the reference, we have 

implemented various mapping and filtering strategies to remove 

false positives without discarding genuine cases. In the performance 

test using 3 cell line datasets with validated fusion cases (NCI-H660, 

K562, MCF-7), FusionScan outperformed other existing programs 

by a considerable margin, achieving the precision and recall rates of 

60% and 79%, respectively. Simulation test also demonstrated that 

FusionScan recovered most of true positives without producing an 

overwhelming number of false positives regardless of sequencing 

depth and read length. The computation time was comparable to 

other leading tools. We also provide several curative means to help 

users investigate the details of fusion candidates easily. Thus, Fu-

sionScan would be a reliable, efficient and convenient program for 

detecting fusion transcripts that meets the need and standard in the 

clinical and experimental research. 

Availability: Freely available at http://fusionscan.ewha.ac.kr/. 

Contact: sanghyuk@ewha.ac.kr 

1 INTRODUCTION  

Fusion genes are important class of biomarkers in cancer studies. 

Numerous fusion genes have been established as cancer drivers 

including BCR-ABL1 fusion in chronic myelogenous leukemia 

(Kantarjian et al., 2002), TMPRSS2-ERG fusion in prostate cancer 

(Tomlins et al., 2005), EML4-ALK (Soda et al., 2007) and CD74-

NRG1 (Fernandez-Cuesta et al., 2014) fusions in non-small cell 

lung cancer, and FGFR3-TACC3 in glioblastoma (Singh et al., 

2012) and bladder cancer (Guo et al., 2013).  

  
*To whom correspondence should be addressed.  

A number of algorithms and programs have been already pub-

lished for fusion detection problem from RNA-Seq data. Basic idea 

is to identify the split reads and discordant read pairs that map to 

two distinct genes. Subsequently, the exact fusion point is deter-

mined from the split reads where single mate reads overlap the 

fusion junction, with the fusion-encompassing reads used as sup-

porting evidence. Early approaches following this scheme include 

FusionSeq (Sboner et al., 2010), ChimeraScan (Iyer et al., 2011), 

deFuse (McPherson et al., 2011), FusionMap (Ge et al., 2011), 

TopHat-Fusion (Kim and Salzberg, 2011), and FusionHunter (Li et 

al., 2011), as extensively reviewed by Zhao and coworkers (Wang 

et al., 2013). 

However, their performance varies dramatically in terms of 

precision, sensitivity (recall), and computational costs according to 

the mapping methods, filtering strategies, and parameter optimiza-

tion. According to recent comparison (Carrara et al., 2013) where 

the performance of these tools was evaluated using synthetic and 

experimental datasets, no program showed satisfactory perfor-

mance. Programs with high sensitivity (ChimeraScan and TopHat-

Fusion) predicted thousands of false positives. Programs with low 

sensitivity (FusionMap, FusionHunter, and deFuse) still produced 

tens to hundreds of false positives, unacceptable number for exper-

imental confirmation, and had very limited overlap in the results. 

Recent programs improved the performance by implementing 

diverse ideas. FusionQ (Liu et al., 2013) used the concept of resid-

ual mapping to extend the short reads. Similarly, BreakFusion 

(Chen et al., 2012) combined the targeted assembly procedure to 

overcome the limits owing to short read length. EricScript (Benelli 

et al., 2012) improved the mapping accuracy by building exon 

junction reference and recalibration using BLAT (Kent, 2002). 

Nevertheless, no programs achieved the accuracy over 50% of 

sensitivity and specificity simultaneously for the experimental 

datasets. Two programs are notable exceptions even though they 

have not been tested on public datasets. SOAPfuse (Jia et al., 2013) 

used a library of fusion junction sequences by partial exhaustion 

algorithm and a series of filters to enhance confidence. Analyzing 

two bladder cancer cell lines, they confirmed 15 cases out of 16 

predictions, whereas deFuse identified 11 fusions of which 10 were 

confirmed by RT-PCR experiments. SOAPfusion (Wu et al., 2013) 

implemented a novel masking and aligning procedure to achieve 

better sensitivity and false discovery rate than deFuse in the simu-

lation test, but it needs further objective evaluation. 

http://fusionscan.ewha.ac.kr/
mailto:sanghyuk@ewha.ac.kr
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In this article, we report a novel algorithm FusionScan that im-

plemented various strategies to enhance both the sensitivity and 

precision. We have compared the performance with other widely 

used programs using both experimental and simulated datasets. 

Our analysis demonstrated that careful mapping and extensive 

filtering processes were essential for good performance.  

2 METHODS 

2.1 FusionScan algorithm 

The goal of FusionScan is to identify fusion transcripts composed 

of combination of intact exons with high sensitivity and specificity. 

Thus, FusionScan requires multiple split reads that join intact 

exons of two different genes. This may miss cases where the fusion 

boundary exists inside the exon but the limitation is minor since 

most of important fusion markers are combination of intact exons 

thus far. Furthermore, with the advances in sequencing throughput, 

the read length and sequencing depth of RNA-Seq has became 

long and deep enough to have multiple split reads including fusion 

boundaries in most cases.  

 The algorithm consists of three main parts of preprocessing 

and mapping, fusion detection, and filtering steps as shown in Fig. 

1. Each step is optimized for reliable detection of fusion genes with 

high sensitivity and specificity as described below. To avoid 

confusion from naming, we will call two genes involved in the 

fusion as the head and tail genes according to the transcription 

direction of 5’3’, and two exons adjacent to the fusion boundary 

as fusion exons. 

2.2 Preprocessing and mapping 

Proper preprocessing to identify discordant reads and accurate 

alignment are the important starting points both for removing reads 

from normal transcripts for fast processing and for obtaining genu-

ine split reads without loss. We find that these are the critical steps 

affecting the overall performance that have been overlooked in 

many cases. 

(1) Quality trimming and artifact filtering were done by 

fastq_quality_trimmer (with the option of ‘-t 10 –l 38’ to keep 

reads with the minimum length > 38 bp of quality score > 10) 

and fastq_artifacts_filter in FASTX-Toolkit, respectively 

(http://hannonlab.cshl.edu/fastx_toolkit/). 

(2) Mapping and removing regular reads were carried out in two 

step procedure. Bowtie2 ver. 2.1.0 (Langmead and Salzberg, 

2012) was used to map RNA-Seq reads to the human transcrip-

tome of refGene from the UCSC genome annotation database 

for the hg19 (GRCh37). Unaligned reads were stored into a file 

with an option of ‘-un’ and they were realigned to the human 

genome, further removing reads mapped to the intronic or in-

tergenic regions. Paired-end reads were processed inde-

pendently in Bowtie mapping to identify discordant split reads. 

Then, the forward and reverse reads were joined and collapsed 

using fastx_collapser to produce unique unmapped reads only. 

(3) Remapping unmapped reads was achieved by SSAHA2 align-

ment software (Ning et al., 2001). We have tested several 

alignment tools for sensitive remapping including GMAP 

v.2013-11-27 (Wu and Watanabe, 2005), SSAHA2 v.2.5, 

Bowtie2 v.2.1.0, BWA v.0.7.5a (Li and Durbin, 2009), BLAT 

v.34, TopHat2 v.2.0.9 (Kim et al., 2013), and MapSplice 

v.2.1.7 (Wang et al., 2010). For 269 known cases of fusion 

genes collected from TICdb (Novo et al., 2007) and ChimerDB 

2.0 (Kim et al., 2010) (data available in the website), we 

mapped the synthetic reads of variable length (50 bp, 76 bp, 

100 bp) with the fusion break point in the middle of the se-

quence. SSAHA2 was the best by a narrow margin over Bow-

tie2 in identifying split reads successfully (Table 1). After ex-

tensive testing, we recommend using SSAHA2 with the option  

Fig. 1. Overview of FusionScan algorithm and statistics for processing K562 RNA-Seq data 
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Table 1. Comparison of RNA-Seq alignment programs. 

 

of ‘-solexa –skip 6 –cmatch 20 –best 5 –output pslx’ to set the 

seed length as 20 bp and to return five best alignments. Since 

this is the most time-consuming step, FusionScan supports the 

multi-thread option to split the unique fasta file and to run 

SSAHA2 alignment in parallel. 

(4) Statistics of preprocessing and mapping are shown in Fig. 1 for 

the K562 RNA-Seq data of paired-end sequencing from the 

ENCODE project. Final number of remapped reads that may 

include the fusion candidates (2  no. of alignments  11) was 

reduced to 8.5% of the original data, thus speeding up down-

stream analysis significantly. 

2.3 Fusion detection 

FusionScan scans all read alignments looking for split reads whose 

aligned loci are apart by more than 50 kilo base pairs in the ge-

nome. To ensure reliable alignment, we demand the minimum 

aligned length  20 bp on both sides and that the aligned parts 

cover more than 50% of the entire read. Two aligned loci of the 

split read should be contiguous within the range of 10 bp. 

Read-through transcripts are fairly common in the human tran-

scriptome. Co-transcription and intergenic splicing (CoTIS) creates 

chimeric transcripts connecting exons of two neighboring genes 

(Communi et al., 2001). Thus, we removed the read-through tran-

scripts between two consecutive genes on the same strand with 5’ 

and 3’ ends accordant to the genome annotation. It should be noted 

that removing read-through cases may remove some genuine gene 

fusions arising from genomic deletions. We also keep the blacklist 

of gene fusions, which were removed at this stage. The black list 

may include unduly frequent gene fusions or fusion predictions 

that have failed in experimental validation. 

Since FusionScan is designed to identify fusion genes specifi-

cally composed of intact exons from two participating genes, we 

apply two steps of examining fusion boundaries. First, we scan the 

fusion boundaries on the split read so that they appear within 6 bp 

from the intact boundaries of fusion exons (i.e. exon boundary 

offset  6 bp) to proceed to the next step. The candidate split read 

is then realigned to the synthetic sequence of combined fusion 

exons using the bl2seq tool of BLAST with the word size of 20 

(Altschul et al., 1997). Again, the minimum aligned length is 20 bp 

on both sides with the minimum percent identity  95. Split reads 

satisfying all conditions given above are the seed reads that would 

strongly support the fusion event. For K562 cell line data shown in 

Fig. 1, the exon boundary condition and realignment against the 

synthetic chimeric transcript reduced the number of candidates 

considerably, and we obtained 92 fusion gene pairs for the filtering 

procedure. 

2.4 Filtering steps 

Since most programs for fusion gene prediction yield too many 

false positives, extensive filtering is essential for reliable perfor-

mance. In an effort to enhance the precision of the prediction (i.e. 

small number of false positives), we have implemented several 

filtering strategies to prevent accidental alignment leading to false 

split reads as follows: 

(1) Homology filter was applied if the nucleotides of 14 bp length 

before and after the fusion point were homologous to the origi-

nal sequences of two participating genes. Bl2seq was used to 

detect homology with the word size of 10. 

(2) Filters for repeat regions, paralogs, and pseudo-genes were 

implemented as well. We discarded the seed reads that were 

aligned within the repeat regions obtained from the Repeat-

Masker (Smit et al., 1996) track in the UCSC genome browser. 

Similarly, gene fusions with paralogous genes obtained from 

the Duplicated Genes Database (Ouedraogo et al., 2012) or 

pseudo-genes obtained from the HUGO database (Gray et al., 

2013) were removed from the candidates.  

(3) In spite of extensive filtering as described above, we still ob-

served many cases where the split read had alternative align-

ment of similar or better quality elsewhere in the genome. We 

implemented the multiple mapping filter by running the local 

version of BLAT v.34 (using the same option as the web ver-

sion of BLAT) for seed reads to identify such cases of ambigu-

ous multiple mapping (sequence identity > 95%) and removed 

those from the fusion candidates.  

(4) Finally, we choose the fusion candidates with multiple seed 

reads as reliable (i.e. the minimum number of seed reads = 2).  

For K562 cell line data, FusionScan predicted 4 fusion gene pairs 

in total, and 3 of those were validated experimentally. The work-

flow in Fig. 1 shows that (i) the homology filter was not effective 

for this data, (ii) removing repeats, paralogs, and pseudo-genes is 

an important step of reducing 35 candidates, (iii) recalibration with 

BLAT alignment is helpful to reduce 12 additional candidates. 

However, the condition of multiple seed reads was most critical to 

yield only 4 fusion candidates. 

2.5 Curative tools 

Even after using various elaborate filters described above, it is 

often necessary for users to examine the alignment explicitly. We 

have developed several tools to facilitate visual inspection by users.  

(1) Alignment plot is of great help to verify the genuine fusion 

events. We provide two different types of alignment plot as 

shown in Fig. 2. Fusion alignment view shows the alignment 

of fusion reads onto the synthetic fusion sequence. Progressive 

tiling pattern is the most desirable feature for the genuine fu-

sion genes. Genome alignment view shows the alignment of 

Mapping 

Program 

No. of correct alignments 
out of 269 known fusion transcripts 

50bp 75bp 100bp 

GMAP 59 28 3 

SSAHA2 237 248 252 

Bowtie2 242 245 248 

BWA 1 238 244 

Blat 218 225 226 

TopHat2 227 228 226 

MapSplice 0 0 242 
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fusion transcripts separately for head and tail genes as a custom 

track in the UCSC genome browser (Fig. 2B). 

(2) Coverage plot from NGS data provides valuable information 

on genomic or transcriptome structures. For example, abrupt 

depth changes at exon boundaries often indicate the gene fu-

sion or alternative splicing events. FusionScan provides cover  

age plots for head and tail genes. As shown in Fig. 2C, both the 

head and tail genes showed abrupt jump at the fusion bounda-

ries in accordance with the fusion event. 

(3) Split seed reads are the most direct evidence of gene fusion. In 

FusionScan, we acknowledge the split reads as the seed only if 

both sides were aligned to fusion exons over 20 bp long. In 

cases where only one side met the condition and the other side 

had a shorter aligned part, we classify them as the support 

reads, which still serve as indirect but good evidence of fusion 

event. To identify support reads, we realign all RNA-Seq reads 

to the synthetic chimeric transcripts using SSAHA2 again, and 

the result is reported with the number of seed reads or used in 

the fusion alignment plot. This process is optional since it de-

mands realignment of all RNA-Seq reads, taking significant 

amount of computation. The fusion alignment view may in-

clude the support reads as shown in Fig. 2A. 

3 RESULTS 

Since a number of fusion detection programs are already available 

in public, it is critical to compare the performance of programs 

objectively. We have carried out the performance evaluation tests 

for FusionScan (FS), SOAPfuse v.1.26 (SF), deFuse v.0.6.1 (dF), 

FusionHunter v.1.4 (FH), FusionMap v.2012-08-12 (FM), and 

TopHat-Fusion v.2.0.9 (THF) using both experimental and simula-

tion data sets. All programs were run with the default options using 

the recommended mapping programs and transcriptome model as 

summarized at the bottom of Table 2. For TopHat-Fusion, we used 

the output from the TopHat-Fusion-Post that reduced the false 

positives using BLAST search since it produced too many false 

positives without the -Post option. 

3.1 Comparison of fusion discovery tools using exper-

imental data from 3 cancer cell lines  

3.1.1. The data. NCI-H660 is a prostate cancer cell line where two 

fusion genes (TMPRSS2-ERG and EEF2-SLC25A42) have been 

verified to play important roles in tumorigenesis. We downloaded 

the RNA-Seq data from the FusionSeq website (Sboner et al., 

2010), which included 6.5 million paired-end reads of 51 bp long. 

K562 cell line has long been the standard of leukemia studies 

where the most famous BCR-ABL1 fusion was identified. Single-

end RNA-Seq data for long polyA cytosol mRNAs was download-

ed from the Caltech RNA-seq group at the UCSC ENCODE web 

site. The data includes 12.8 million reads of paired-end sequencing 

with 76 bp read length. Three cases of gene fusion were known for 

the K562 cell line (Berger et al., 2010). 

One of the most extensively studied samples for gene fusion is 

the MCF-7 breast cancer cell line. The Caltech RNA-seq group 

Table 2. Summary of known fusion genes detected by each 

tool and the comparison statistics. 

Sample 
Known (Gold) 
fusion genes 

FS SF dF FH FM THF 

NCI-
H660 

(2) 

TMPRSS2-ERG       

EEF2-SLC25A42        

TP/FP 2/0 2/16 2/11 2/1 1/1 2/1 

Precision 1.0 0.11 0.15 0.67 0.50 0.67 

Recall 1.0 1.0 1.0 1.0 0.50 1.0 

K562 
(3) 

BCR-ABL1        

NUP214-XKR3       

BAT3-SLC44A4       

TP/FP 3/1 3/7 3/27 1/1 3/12 3/0 

Precision 0.75 0.30 0.10 1.0 0.20 1.0 

Recall 1.0 1.0 1.0 0.33 1.0 1.0 

MCF-7 
(23) 

USP31-CRYL1       

ARFGEF2-SULF2    
 

  

TXLNG-SYAP1    
 

  

DEPDC1B-ELOVL7       

SYTL2-PICALM       

RPS6KB1-DIAPH3    
  

 

AHCYL1-RAD51C   
 

   

TAF4-BRIP1   
  

 
 

POP1-MATN2    
 

 
 

GCN1L1-MSI1     
  

 

ESR1-CCDC170       

SMARCA4-CARM1    
 

  

MYO6-SENP6       

ADAMTS19-SLC27A6       

GATAD2B-NUP210L    
 

  

SLC25A24-NBPF6    
 

 
 

ATXN7L3-FAM171A2    
 

 
 

C16orf62-IQCK    
 

  

TBL1XR1-RGS17     
   

BCAS4-BCAS3     
 

 

RPS6KB1-TMEM49       

ABCA5-PPP4R1L   
    

C16orf45-ABCC1   
    

TP/FP 17/14 21/83 18/132 8/11 17/126 16/37 

Precision 0.55 0.18 0.12 0.42 0.12 0.30 

Recall 0.74 0.91 0.78 0.35 0.74 0.70 

Overall 

Precision 0.60 0.20 0.12 0.46 0.13 0.36 

Recall 0.79 0.93 0.82 0.39 0.75 0.75 

F1 score 0.68 0.33 0.21 0.42 0.22 0.48 

Mapping program SSAHA2 
SOAP2 
BWA 

GMAP Bowtie GSNAP Bowtie 

Transcriptome RefGene Ensembl Ensembl RefGene RefGene Ensembl 

- ‘’ and ‘’ indicate that the case was predicted successfully, with direction reversed in ‘’. 

- TP = true positive, FP = false positive, Precision = TP/(TP+FP), Recall = TP/(TP+FN), 

 F1 score = 2•precision•recall/(precision+recall) 

Fig. 2. Alignment and coverage plots for the BCR-ABL1 gene 

fusion in K562 cell line. Blue vertical lines in C indicate the exon 

boundaries in the head and tail genes. 
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includes RNA-seq data of MCF-7 cell line as well (SRR521521 in 

SRA database). The data contains 40 million reads of paired-end 

sequencing with 76 bp read length. Sakarya et al. independently 

studied gene fusions in the MCF-7 cell line using 80 million reads 

produced by SOLiD paired-end sequencing (Sakarya et al., 2012). 

They validated 23 gene fusions using TaqMan fusion assays, 

which were used as gold standards for our benchmark test. 

Three data sets of cancer cell lines from public resources repre-

sent diverse situations such as different cell types, sequencing 

depth, single and paired reads, and different read lengths, thus 

being expected to provide objective result in the comparison test. 

3.1.2. Performance comparison. The result from six programs for 

fusion detection based on RNA-seq data is summarized in Table 2. 

For fair comparison, we filtered out all cases with the number of 

seed reads = 1 since FusionScan required the number of seed reads 

 2. This may remove some true positives in other programs, but 

certainly helps in removing false positives. We calculated the pre-

cision and recall rates since the true negatives are difficult to prove 

in gene fusion discovery. It should be noted that we did not penal-

ize other programs for giving wrong direction (i.e. reversed head 

and tail genes). 

In general, the precision and recall rates are contradictory to 

each other. FusionScan achieved the best in the precision rate 

(60%) and in the overall performance measured by F1 score, the 

harmonic mean of precision and recall rates. SOAPfuse was the 

best in the recall rate (93%) but its precision rate was just 20%, 

producing lots of false positives. Fusion-Hunter achieved the pre-

cision rate of 46% by sacrificing the recall rate to 39%, missing too 

many true positives. TopHat-Fusion showed fairly good perfor-

mance mainly because of recent implementation of extensive filter-

ing scheme in the TopHat-Fusion-Post option.  

For experimental biologists or clinicians who carry out valida-

tion experiments with limited amount of samples, the precision rate 

is the most critical attribute. Thus, it is important to note that Fu-

sionScan achieved the precision rate of 60% without losing the 

recall rate considerably (79%). The difference with other programs 

is substantial, including FusionHunter that achieved excellent per-

formance in recent comparison test by the SOAPfusion study (Wu 

et al., 2013). It should be noted that one fusion case of C16orf45-

ABCC1 was not predicted by all programs, which may suggest that 

fusion reads for this case were not present in the Caltech RNA-Seq 

data unlike the SOLiD sequencing data by Sakarya et al. Exclud-

ing this case, the recall rate of FusionScan increases to 81.5%.  

The prediction results from five tools are further illustrated as a 

Venn diagram in Fig. 3, excluding FusionHunter that missed many 

true positives. Common hits would have better chance to be genu-

ine fusion cases. FusionScan showed the most common hits from 

more than three programs (28 out of 31 cases). Importantly, Fu-

sionScan had only one singleton prediction, which strongly sup-

ports the reliability FusionScan’s predictions. FusionMap, deFuse, 

and SOAPfuse had a number of singleton predictions, most of 

those being expected to be false positives.  

3.2 Comparison of fusion discovery tools using simu-

lation data sets  

Testing with experimental datasets is objective and reliable since it 

reflects diverse situations and experimental conditions that could 

not be mimicked in simulation studies. However, the scope of 

benchmark test is limited with small number of known fusion cases 

and with experimental settings under specific conditions. Thus, we 

carried out the benchmark test using simulation datasets as well to 

estimate the performance of each program in different conditions 

such as variable read length and coverage. 

3.2.1. Preparing the simulation data. Positive cases of fusion gene 

were artificially constructed by joining two exons of randomly 

chosen genes, isoforms, and exons in the given order. Adjacent 

genes were avoided in the selection to exclude read-through tran-

scripts. Using the transcriptome model of refGene, we have gener-

ated 10,000 fusion cases for the benchmark test. 

For each fusion case, we prepared a synthetic fusion transcript 

by concatenating the 5’ side of the head transcript and 3’ side of 

the tail transcript at the fusion boundary. Random nucleotide posi-

tion was selected to make a paired end read of desired length (50 

bp, 75 bp, or 100 bp) until the pre-determined depth of 10X, 30X, 

or 50X was achieved. We also demanded the minimum coverage 

of transcript of 95% (i.e. less than 5% of nucleotides not covered 

by a sequencing read). The insert size of the paired end reads were 

selected randomly following the normal distribution with the aver-

age insert size of 100 bp and with standard deviation of 10 bp.  

Compared to the existing simulation methods that usually add 

hundreds of synthetic fusion transcripts to the transcriptome model 

(e.g. RefGene or Ensembl) and run a simulator for producing 

paired-end sequencing data (Jia et al., 2013; Wu et al., 2013), our 

procedure of preparing simulation datasets has the advantage of 

reflecting diverse cases of gene fusion faithfully. The list of 10,000 

fusion cases and simulated paired-end sequencing data are availa-

ble at the website. 

3.2.2. Performance comparison. The precision and recall curves 

from six different programs for fusion detection are shown in Fig. 

4 for various sequencing depths and read lengths. Here, we used 

the default settings of each program for the minimum number of 

seed reads, instead of demanding two seed reads at least as for the 

experimental datasets.  

TopHat-Fusion-Post showed the highest precision rate consist-

ently but its recall rate was close to 50%. FusionScan was the sec-

Fig. 3. Venn diagram of fusion predictions for all 3 cell lines. 

Numbers in parenthesis indicate the total number of predictions. 
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ond to TopHat-Fusion in the precision and the best in the recall 

rate. At the read length of 100bp and 50X depth, a common prac-

tice with recent advances in sequencing technology, FusionScan 

showed the precision and recall rates of 89% and 87%, respective-

ly. The performance of SOAPfuse and deFuse was slightly inferior 

to FusionScan in precision and was comparable in the recall rates. 

As the sequencing depth increased, the recall rates was im-

proved in all programs. FusionMap and FusionHunter showed 

substantial variation. The precision rates, however, were fairly 

independent of sequencing depth and read length.  

Overall, the simulated test showed that three programs (Fu-

sionScan, SOAPfuse, and deFuse) achieved comparable perfor-

mance with a slight advantage to FusionScan in the precision. 

TopHat-Fusion’s prediction is reliable, but it misses many true 

positives as well. 

3.3 Implementation and computational resources 

FusionScan algorithm was developed using Java (JDK1.7) and 

Python languages. It further requires many third-party programs 

such as Bowtie2, SSAHA2, BLAT, bl2seq, samtools and FASTX-

Toolkit. Thus, it is highly recommended to run FusionScan in 

Linux environment with the Java Runtime Environment 1.7 or later. 

The CPU time and memory usage are compared in Fig. 5. Fu-

sionScan and SOAPfuse took the longest CPU time mainly to 

achieve the high recall rates. For example, quality trimming with 

the option of ‘-t 20 –l 40’ instead of ‘-t 10 –l 38’ decreased the run 

time by half in FusionScan, but lost a few true positives in bench-

mark testing with 3 cell line datasets. Measuring the CPU time 

spent for each step of workflow, the preprocessing and mapping 

took almost half of the total CPU time. 

4 DISCUSSION 

For both the real and simulated datasets, the results show that Fu-

sionScan provides reliable predictions in fusion discovery under 

different sequencing coverage and read length.  

Even though the general trends were similar between the two 

datasets, the precision was much worse for the experimental da-

tasets. This indicates that there exist many factors influencing the 

prediction accuracy in reality. Thus, the result from simulation data 

should be taken cautiously. Interestingly, SOAPfuse achieved bet-

ter recall rate for the experimental datasets. 

FusionScan was the only program with the precision rate over 

50%. The enhanced performance of FusionScan may be ascribed to 

several points as follows: 

(1) Accurate read alignment is absolutely critical. We have select-

ed SSAHA2 as the most sensitive mapping program through a 

test with known fusion transcripts. This process minimizes the 

loss of true positives from the start. In a similar effort, SOAP-

fusion used a special aligner that masked the intronic regions 

from the transcripts. 

(2) Reads with alternative mapping positions should be analyzed 

cautiously. Many false positives from other programs had their 

seed reads mapped to other positions concordantly with similar 

mapping quality. FusionScan removed those ambiguously 

mapped reads at the filtering steps as described in Fig. 1. 

Predicting fusion genes from RNA-Seq data is a procedure full 

of optimization steps. For example, we have noticed that four true 

positive cases were filtered out in FusionScan at the final step 

since they had only one seed read. Relieving the minimum number 

of seed reads as 1 or using support reads as the basis of rescuing 

those cases introduced too many false positives.  

In conclusion, FusionScan is a reasonable compromise be-

tween precision and recall rates, achieving 60% and 79%, respec-

tively, in tests using experimental datasets. With implementation of 

several curative tools facilitating validation of fusion transcripts, 

we believe that FusionScan would be a reliable tool for detecting 

fusion transcripts that meets the need and standard in the clinical 

and experimental research. 
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